8XC196KC/8XC196KC20 COMMERCIAL/EXPRESS CHMOS MICROCONTROLLER 87C196KC—16 Kbytes of On-Chip OTPROM 83C196KC—16 Kbytes ROM 80C196KC—ROMIess - 16 and 20 MHz Available - 488 Byte Register RAM - Register-to-Register Architecture - 28 Interrupt Sources/16 Vectors - Peripheral Transaction Server - 1.4 μs 16 x 16 Multiply (20 MHz) - 2.4 µs 32/16 Divide (20 MHz) - Powerdown and idle Modes - Five 8-Bit I/O Ports - 16-Bit Watchdog Timer - **■** Extended Temperature Available - Dynamically Configurable 8-Bit or 16-Bit Buswidth - **■** Full Duplex Serial Port - High Speed I/O Subsystem - **■** 16-Bit Timer - 16-Bit Up/Down Counter with Capture - 3 Pulse-Width-Modulated Outputs - Four 16-Bit Software Timers - 8- or 10-Bit A/D Converter with Sample/Hold - **HOLD/HLDA** Bus Protocol - OTPROM One-Time Programmable Version The 80C196KC 16-bit microcontroller is a high performance member of the MCS®-96 microcontroller family. The 80C196KC is an enhanced 80C196KB device with 488 bytes RAM, 16 and 20 MHz operation and an optional 16 Kbytes of ROM/EPROM. Intel's CHMOS IV process provides a high performance processor along with low power consumption. The 87C196KC is an 80C196KC with 16 Kbytes on-chip OTPROM. The 83C196KC is an 80C196KC with 16 Kbytes factory programmed ROM. In this document, the 80C196KC will refer to all products unless otherwise stated. Four high-speed capture inputs are provided to record times when events occur. Six high-speed outputs are available for pulse or waveform generation. The high-speed output can also generate four software timers or start an A/D conversion. Events can be based on the timer or up/down counter. With the commercial (standard) temperature option, operational characteristics are guaranteed over the temperature range of 0°C to \pm 70°C. With the extended (Express) temperature range option, operational characteristics are guaranteed over the temperature range of \pm 40°C to \pm 85°C. Unless otherwise noted, the specifications are the same for both options. See the Packaging information for extended temperature designators. Figure 1. 8XC196KC Block Diagram Figure 2. 8XC196KC New SFR Bit (CLKOUT Disable) ## PROCESS INFORMATION This device is manufactured on PX29.5 or PX29.9, a CHMOS III-E process. Additional process and reliability information is available in Intel's Components Quality and Reliability Handbook, Order Number 210997. EXAMPLE: N87C196KC is 68-Lead PLCC OTPROM, For complete package dimensional data, refer to the Intel Packaging Handbook (Order Number 240800). ### NOTE: 1. EPROMs are available as One Time Programmable (OTPROM) only. Figure 3. The 8XC196KD Family Nomenclature **Table 1. Thermal Characteristics** | Package
Type | $ heta_{ja}$ | $\theta_{ extsf{jc}}$ | |-----------------|--------------|-----------------------| | PLCC | 35°C/W | 13°C/W | | QFP | 55°C/W | 16°C/W | | SQFP | TBD | TBD | | | 1 1 1 | rimete for static air | All thermal impedance data is approximate for static air conditions at 1W of power dissipation. Values will change depending on operation conditions and application. See the Intel Packaging Handbook (order number 240800) for a description of Intel's thermal impedance test methodology. Table 2. 8XC196KC Memory Map | Table 2. 8XC 196KC Methory Map | | | | | |--|---------|--|--|--| | Description | Address | | | | | External Memory or I/O | 0FFFFH | | | | | External memory : | 06000H | | | | | Internal ROM/OTPROM or External | 5FFFH | | | | | Memory (Determined by EA) | 2080H | | | | | Reserved. Must contain FFH. | 207FH | | | | | (Note 5) | 205EH | | | | | PTS Vectors | 205DH | | | | | | 2040H | | | | | Upper Interrupt Vectors | 203FH | | | | | | 2030H | | | | | ROM/OTPROM Security Key | 202FH | | | | | THOMAS TO THE STATE OF STAT | 2020H | | | | | Reserved. Must contain FFH. | 201FH | | | | | (Note 5) | 201AH | | | | | Reserved. Must Contain 20H | 2019H | | | | | (Note 5) | | | | | | ССВ | 2018H | | | | | Reserved. Must contain FFH. | 2017H | | | | | (Note 5) | 2014H | | | | | Lower Interrupt Vectors | 2013H | | | | | | 2000H | | | | | Port 3 and Port 4 | 1FFFH | | | | | Word Addressable Only | 1FFEH | | | | | External Memory | 1FFDH | | | | | | 0200H | | | | | 488 Bytes Register RAM (Note 1) | 01FFH | | | | | 100 27,000 1129-11 | 0018H | | | | | CPU SFR's (Notes 1, 3, 4) | 0017H | | | | | 0.00,110,1550,1,5,7 | 0000H | | | | ### NOTES: - 1. Code executed in locations 0000H to 01FFH will be forced external. - 2. Reserved memory locations must contain 0FFH unless noted. - 3. Reserved SFR bit locations must contain 0. - 4. Refer to 8XC196KC User's manual for SFR descriptions. - 5. WARNING: Reserved memory locations must not be written or read. The contents and/or function of these locations may change with future revisions of the device. Therefore, a program that relies on one or more of these locations may not function properly. Figure 4. 68-Lead PLCC Package Figure 5. S8XC196KC 80-Pin QFP Package Figure 6. 80-Pin SQFP Package ## PIN DESCRIPTIONS | Symbol | Name and Function | |------------------|--| | V _{CC} | Main supply voltage (5V). | | V _{SS} | Digital circuit ground (0V). There are three VSS pins, all of which must be connected. | | V _{REF} | Reference voltage for the A/D converter (5V). V_{REF} is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0. Must be connected for A/D and Port 0 to function. | | ANGND | Reference ground for the A/D converter. Must be held at nominally the same potential as V_{SS} . | | V _{PP} | Timing pin for the return from powerdown circuit. This pin also supplies the programming voltage on the EPROM device. | | XTAL1 | Input of the oscillator inverter and of the internal clock generator. | | XTAL2 | Output of the oscillator inverter. | | CLKOUT | Output of the internal clock generator. The frequency of CLKOUT is $\frac{1}{2}$ the oscillator frequency. | | RESET | Reset input and open drain output. | | BUSWIDTH | Input for buswidth selection. If CCR bit 1 is a one, this pin selects the bus width for the bus cycle in progress. If BUSWIDTH is a 1, a 16-bit bus cycle occurs. If BUSWIDTH is a 0 an 8-bit cycle occurs. If CCR bit 1 is a 0, the bus is always an 8-bit bus. | | NMI | A positive transition causes a vector through 203EH. | | INST | Output high during an external memory read indicates the read is an instruction fetch. INST is valid throughout the bus cycle. INST is activated only during external memory accesses and output low for a data fetch. | | EA | Input for memory select (External Access). EA equal high causes memory accesses to locations 2000H through 5FFFH to be directed to on-chip ROM/EPROM. EA equal to low causes accesses to those locations to be directed to off-chip memory. Also used to enter programming mode. | | ALE/ADV | Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide a signal to demultiplex the address from the address/data bus. When the pin is ADV, it goes inactive high at the end of the bus cycle. ALE/ADV is activated only during external memory accesses. | | RD | Read signal output to external memory. RD is activated only during external memory reads. | | WR/WRL | Write and Write Low output to external memory, as selected by the CCR. WR will go low for every external write, while WRL will go low only for external writes where an even byte is being written. WR/WRL is activated only during external memory writes. | | BHE/WRH | Bus High Enable or Write High output to external memory, as selected by the CCR. BHE will go low for external writes to the high byte of the data bus. WRH will go low for external writes where an odd byte is being written. BHE/WRH is activated only during external memory writes. | | READY | Ready input to lengthen external memory cycles, for interfacing to slow or dynamic memory or for bus sharing. When the external memory is not being used, READY has no effect. | | HSI | Inputs to High Speed Input Unit. Four HSI pins are available: HSI.0, HSI.1, HSI.2 and HSI.3. Two of them (HSI.2 and HSI.3) are shared with the HSO Unit. | | HSO | Outputs from High Speed Output Unit. Six HSO pins are available: HSO.0, HSO.1, HSO.2, HSI.3, HSO.4 and HSO.5. Two of them (HSO.4 and HSO.5) are shared with the HSI Unit. | | Port 0 | 8-bit high impedance input-only port. These pins can be used as digital inputs and/or as analog inputs to the on-chip A/D converter. | | Port 1 | 8-bit quasi-bidirectional I/O port. | | Port 2 | 8-bit multi-functional port. All of its pins are shared with other functions in the 80C196KC. Pins 2.6 and 2.7 are quasi-bidirectional. | # PIN DESCRIPTIONS (Continued) | | PTIONS (Continued) Name and Function | |---------------|--| | Symbol | 8-bit bidirectional I/O ports with open drain outputs. These pins are shared with the | | Ports 3 and 4 | multiplexed address/ data bus which | | HOLD | Bus Hold input requesting control of the bus. | | HLDĀ | Bus Hold input requesting controller has a pending external memory Bus Request output activated when the bus controller has a pending external memory | | BREQ | Bus Request output activated when the bus controlled the public cycle. | | PMODE | Determines the EPROM programming mode. A low signal in Auto Programming mode indicates that programming is in process. A high | | PACT | signal indicates programmed correctly. A | | PVAL | A low signal in Auto Programming Mode indicates the device programmed correctly. high signal in Slave Programming Mode indicates the device programming Byte Programming Mode | | PALE | A falling edge in Slave Programming Mode and Vitto | | | (input to slave). A falling edge in Slave Programming Mode indicates that ports 3 and 4 contain valid | | PROG | A falling edge in Slave Programmed programming data (input to slave). A high signal in Slave Programmed correctly. | | PVER | A high signal in Slave Programmig Mode and Auto Coming Aut | | AINC | indicates the byte programmed correctly. Auto Increment. Active low input signal indicates that the auto increment mode is enabled. Auto Increment will allow reading or writing of sequential EPROM locations without address transactions across the PBUS for each read or write. | # **ELECTRICAL CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS*** | Ambient Temperature | |--| | Under Bias55°C to +125°C | | Storage Temperature65°C to +150°C | | Voltage On Any Pin to V_{SS} $-0.5V$ to $+7.0V$ ⁽¹⁾ | | Voltage from EA or | | V_{PP} to V_{SS} or ANGND + 13.00V | | Power Dissipation1.5W(2) | NOTICE: This data sheet contains preliminary information on new products in production. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice. *WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability. ### NOTE: - 1. This includes V_{PP} and EA on ROM or CPU only devices. - 2. Power dissipation is based on package heat transfer limitations, not device power consumption. ## **OPERATING CONDITIONS** | Symbol | Description | Min | Max | Units | |------------------|---|-----------------------|-----------------------|-------| | TA | Ambient Temperature Under Bias Commercial Temp. | 0 | + 70 | °C | | TA | Ambient Temperature Under Bias Extended Temp. | -40 | + 85 | °C | | V _{CC} | Digital Supply Voltage | 4.50 | 5.50 | V | | V _{REF} | Analog Supply Voltage | 4.00 | 5.50 | V | | ANGND | Analog Ground Voltage | V _{SS} - 0.4 | V _{SS} + 0.4 | V(1) | | Fosc | Oscillator Frequency (8XC196KC) | 8 | 16 | MHz | | Fosc | Oscillator Frequency (8XC196KC20) | 8 | 20 | MHz | ## NOTE: ## **DC CHARACTERISTICS** (Over Specified Operating Conditions) | Symbol | Description | Min | Тур | Max | Units | Test Conditions | |------------------|---|--|-----|-----------------------|-------------|--| | V _{IL} | Input Low Voltage | -0.5 | | 0.8 | > | | | V_{IH} | Input High Voltage (Note 1) | 0.2 V _{CC} + 1.0 | | V _{CC} + 0.5 | ٧ | | | V _{IH1} | Input High Voltage on XTAL 1 | 0.7 V _{CC} | | V _{CC} + 0.5 | ٧ | | | V _{IH2} | Input High Voltage on RESET | 2.2 | | V _{CC} + 0.5 | ٧ | | | V _{HYS} | Hysteresis on RESET | 300 | | | mV | $V_{CC} = 5.0V$ | | V _{OL} | Output Low Voltage | | | 0.3
0.45
1.5 | > > | $I_{OL} = 200 \mu A$
$I_{OL} = 2.8 \text{ mA}$
$I_{OL} = 7 \text{ mA}$ | | V _{OL1} | Output Low Voltage
in RESET on P2.5 (Note 2) | | | 0.8 | ٧ | $I_{OL} = +0.4 \text{ mA}$ | | V _{OH} | Output High Voltage
(Standard Outputs) | $V_{CC} - 0.3$
$V_{CC} - 0.7$
$V_{CC} - 1.5$ | | | V
V
V | $\begin{split} I_{OH} &= -200~\mu\text{A} \\ I_{OH} &= -3.2~\text{mA} \\ I_{OH} &= -7~\text{mA} \end{split}$ | ^{1.} ANGND and $V_{\mbox{\footnotesize SS}}$ should be nominally at the same potential. # DC CHARACTERISTICS (Over Specified Operating Conditions) (Continued) | | ARACTERISTICS (Over Specifie Description | Min | Тур | Max | Units | | |------------------|--|---|----------|-------|-------------|---| | onto | Output High Voltage
(Quasi-bidirectional Outputs) | $egin{array}{l} V_{CC} - 0.3 \ V_{CC} - 0.7 \ V_{CC} - 1.5 \end{array}$ | | | V
V
V | $I_{OH} = -10 \mu A$ $I_{OH} = -30 \mu A$ $I_{OH} = -60 \mu A$ $V_{IH} = V_{CC} - 1.5V$ | | OH1 | Logical 1 Output Current in Reset.
on P2.0. Do not exceed this
or device may enter test modes. | -0.8 | | TDD | mA | $V_{IN} = 0.45V$ | | IL2 | Logical 0 Input Current in Reset
on P2.0. Maximum current that
must be sunk by external
device to ensure test mode entry. | | | TBD | mA | | | Ін1 | Logical 1 Input Current. Maximum current that external device must source to initiate NMI. | | | + 200 | , | $V_{IN} = V_{CC} = 2.4V$ | | | Input Leakage Current (Std. Inputs) | | <u> </u> | ±10 | μΑ | | | <u> </u> | Input Leakage Current (Port 0) | | | ±3 | μA | | | <u> L 1</u> | 1 to 0 Transition Current (QBD Pins | | | -650 | | $V_{IN} = 2.0V$ | | 1 _{TL} | Logical 0 Input Current (QBD Pins) | | | -70 | | | | <u> </u> | Ports 3 and 4 in Reset | | | -70 | | 10.5411 | | I _{CC} | Active Mode Current in Reset (8XC196KC) | | 65 | 75 | mA | $V_{CC} = V_{PP} = V_{REF} = 5.5$ | | Icc | Active Mode Current in Reset (8XC196KC20) | | 80 | 92 | mA | $V_{CC} = V_{PP} = V_{REF} = 5.5$ | | IDLE | Idle Mode Current (8XC196KC) | | 17 | 25 | mA | $V_{CC} = V_{PP} = V_{REF} = 5.5$ | | IDLE | Idle Mode Current (8XC196KC20) | | 21 | 30 | mA | $V_{CC} = V_{PP} = V_{REF} = 5.5$ | | | Powerdown Mode Current | | 8 | 15 | μΑ | | | IPD | A/D Converter Reference Current | | 2 | 5 | m/ | 00 | | IREF | | 6K | | 65H | < Ω | $V_{CC} = 5.5V, V_{IN} = 4.0V$ | | R _{RST} | Reset Pullup Resistor | | 1 | 10 | pF | | | Cs | Pin Capacitance (Any Pin to V _{SS}) | | | | | | - 1. All pins except RESET and XTAL1. - 2. Violating these specifications in Reset may cause the part to enter test modes. - 3. Commercial specifications apply to express parts except where noted. - 4. QBD (Quasi-bidirectional) pins include Port 1, P2.6 and P2.7. 5. Standard Outputs include AD0-15, RD, WR, ALE, BHE, INST, HSO pins, PWM/P2.5, CLKOUT, RESET, Ports 3 and 4, TXD/P2.0 and RXD (in serial mode 0). The V_{OH} specification is not valid for RESET. Ports 3 and 4 are open-drain outputs. - 6. Standard Inputs include HSI pins, READY, BUSWIDTH, RXD/P2.1, EXTINT/P2.2, T2CLK/P2.3 and T2RST/P2.4. - 7. Maximum current per pin must be externally limited to the following values if V_{OL} is held above 0.45V or V_{OH} is held below $V_{CC} = 0.7V$: I_{OL} on Output pins: 10 mA IOH on quasi-bidirectional pins: self limiting IOH on Standard Output pins: 10 mA 8. Maximum current per bus pin (data and control) during normal operation is ± 3.2 mA. 9. During normal (non-transient) conditions the following total current limits apply: IOH is self limiting I_{OL}: 29 mA Port 1, P2.6 I_{OH}: 26 mA HSO, P2.0, RXD, RESET I_{OL}: 29 mA I_{OL}: 13 mA I_{OH}: 11 mA P2.5, P2.7, WR, BHE I_{OH}: 52 mA IOL: 52 mA AD0-AD15 IOH: 13 mA RD, ALE, INST-CLKOUT IOL: 13 mA Figure 7. I_{CC} and I_{IDLE} vs Frequency ## **AC CHARACTERISTICS** For use over specified operating conditions. Test Conditions: Capacitive load on all pins = 100 pF, Rise and fall times = 10 ns, F_{OSC} = 16 MHz ## The system must meet these specifications to work with the 80C196KC: | Symbol | Description | Min | Max | Units | Notes | |-------------------|-----------------------------------|-----------------------|-------------------------|-------|----------| | T _{AVYV} | Address Valid to READY Setup | | 2 T _{OSC} - 68 | ns | | | T _{LLYV} | ALE Low to READY Setup | | T _{OSC} - 70 | ns | (Note 3) | | T _{YLYH} | Non READY Time | No up | per limit | ns | | | T _{CLYX} | READY Hold after CLKOUT Low | 0 | T _{OSC} - 30 | ns | (Note 1) | | T _{LLYX} | READY Hold after ALE Low | T _{OSC} - 15 | 2 T _{OSC} - 40 | ns | (Note 1) | | TAVGV | Address Valid to Buswidth Setup | | 2 T _{OSC} - 68 | ns | | | T _{LLGV} | ALE Low to Buswidth Setup | | T _{OSC} 60 | ns | (Note 3) | | T _{CLGX} | Buswidth Hold after CLKOUT Low | 0 | | ns | | | T _{AVDV} | Address Valid to Input Data Valid | | 3 T _{OSC} — 55 | ns | (Note 2) | | T _{RLDV} | RD Active to Input Data Valid | | T _{OSC} - 22 | ns | (Note 2) | | T _{CLDV} | CLKOUT Low to Input Data Valid | | T _{OSC} 45 | ns | | | TRHDZ | End of ĀĎ to Input Data Float | | Tosc | ns | | | T _{RXDX} | Data Hold after RD Inactive | 0 | | ns | | - 1. If max is exceeded, additional wait states will occur. - 2. If wait states are used, add 2 T_{OSC} * N, where N = number of wait states. 3. These timings are included for compatability with older -90 and BH products. They should not be used for newer highspeed designs. ## **AC CHARACTERISTICS** (Continued) For user over specified operating conditions. Test Conditions: Capacitive load on all pins = 100 pF, Rise and fall times = 10 ns, F_{OSC} = 16 MHz ## The 80C196KC will meet these specifications: | Symbol | Description | Min | Max | Units | Notes | |-------------------|-------------------------------------|-----------------------|-----------------------|-------|----------| | F _{XTAL} | Frequency on XTAL1 (8XC196KC) | 8 | 16 | MHz | (Note 1) | | FXTAL | Frequency on XTAL1 (8XC196KC20) | 8 | 20 | MHz | (Note 1) | | Tosc | I/F _{XTAL} (8XC196KC) | 62.5 | 125 | ns | | | Tosc | I/F _{XTAL} (8XC196KC20) | 50 | 125 | ns | | | T _{XHCH} | XTAL1 High to CLKOUT High or Low | + 20 | + 110 | ns | | | T _{CLCL} | CLKOUT Cycle Time | 2 T ₀ | osc | ns | | | T _{CHCL} | CLKOUT High Period | T _{OSC} - 10 | T _{OSC} + 15 | ns | | | T _{CLLH} | CLKOUT Falling Edge to ALE Rising | -5 | + 15 | ns | | | TLLCH | ALE Falling Edge to CLKOUT Rising | -20 | + 15 | ns | | | TLHLH | ALE Cycle Time | 4 T _{OSC} | | ns | (Note 4 | | T _{LHLL} | ALE High Period | T _{OSC} - 10 | T _{OSC} + 10 | ns | | | TAVLL | Address Setup to ALE Falling Edge | T _{OSC} - 15 | | | | | T _{LLAX} | Address Hold after ALE Falling Edge | T _{OSC} - 35 | | ns | | | T _{LLRL} | ALE Falling Edge to RD Falling Edge | T _{OSC} - 30 | | ns | | | TRLCL | RD Low to CLKOUT Falling Edge | +4 | + 30 | ns | | | T _{RLRH} | RD Low Period | T _{OSC} - 5 | | ns | (Note 4 | | TRHLH | RD Rising Edge to ALE Rising Edge | Tosc | T _{OSC} + 25 | ns | (Note 2 | | T _{RLAZ} | RD Low to Address Float | | +5 | ns | | | T _{LLWL} | ALE Falling Edge to WR Falling Edge | T _{OSC} - 10 | | ns | | | T _{CLWL} | CLKOUT Low to WR Falling Edge | 0 | + 25 | ns | | | TQVWH | Data Stable to WR Rising Edge | T _{OSC} - 23 | | | (Note 4 | | T _{CHWH} | CLKOUT High to WR Rising Edge | -5 | + 15 | ns | | | T _{WLWH} | WR Low Period | T _{OSC} - 20 | | ns | (Note 4 | | T _{WHQX} | Data Hold after WR Rising Edge | T _{OSC} - 25 | | ns | <u> </u> | | TWHLH | WR Rising Edge to ALE Rising Edge | T _{OSC} - 10 | T _{OSC} + 15 | ns | (Note 2 | | T _{WHBX} | BHE, INST after WR Rising Edge | T _{OSC} - 10 | | ns | | | T _{WHAX} | AD8-15 HOLD after WR Rising | T _{OSC} - 30 | | ns | (Note | | T _{RHBX} | BHE, INST after RD Rising Edge | T _{OSC} - 10 | | ns | _ | | TRHAX | AD8-15 HOLD after RD Rising | T _{OSC} - 25 | | ns | (Note | ^{1.} Testing performed at 8 MHz. However, the device is static by design and will typically operate below 1 Hz. ^{2.} Assuming back-to-back bus cycles. ^{3. 8-}Bit bus only. ^{4.} If wait states are used, add 2 T_{OSC} * N, where N = number of wait states. **System Bus Timings** ## **READY Timings (One Wait State)** ## HOLD/HLDA Timings | Symbol | Description | Min | Max | Units | Notes | |--------------------|---|------|------|-------|----------| | | HOLD Setup | + 55 | | ns | (Note 1) | | THVCH | | -15 | + 15 | ns | | | T _{CLHAL} | CLKOUT Low to HLDA Low | 15 | + 15 | ns | | | TCLBRL | CLKOUT Low to BREQ Low | 13 | | | | | THALAZ | HLDA Low to Address Float | | + 15 | ns | | | T _{HALBZ} | HLDA Low to BHE, INST, RD, WR Weakly Driven | | + 20 | ns | | | T _{CLHAH} | CLKOUT Low to HLDA High | -15 | + 15 | ns | | | T _{CLBRH} | CLKOUT Low to BREQ High | -15 | + 15 | ns | | | THAHAX | HLDA High to Address No Longer Float | -15 | | ns | | | THAHBY | HLDA High to BHE, INST, RD, WR Valid | 10 | +15 | ns | | | TCLLH | CLKOUT Low to ALE High | -5 | + 15 | ns | | ## NOTE: ## DC SPECIFICATIONS IN HOLD | SPECIFICATIONS IN FIGURE | Min | Max | Units | | |--|-----|------|---------------------------------|--| | Description Min | | Max | | | | Weak Pullups on ADV, RD,
WR, WRL, BHE | 50K | 250K | $V_{CC} = 5.5V, V_{IN} = 0.45V$ | | | Weak Pulldowns on
ALE, INST | 10K | 50K | $V_{CC} = 5.5V, V_{IN} = 2.4$ | | ^{1.} To guarantee recognition at next clock. ## **Maximum Hold Latency** | Maximum Hold Editory | | | | |---------------------------|------------|--|--| | Bus Cycle Type | | | | | Internal Execution | 1.5 States | | | | 16-Bit External Execution | 2.5 States | | | | 8-Bit External Execution | 4.5 States | | | # **EXTERNAL CLOCK DRIVE (8XC196KC)** | | Parameter | Min | Max | Units | |---------------------|----------------------|------|------|-------| | Symbol | | 0 | 16.0 | MHz | | 1/T _{XLXL} | Oscillator Frequency | 0 | | | | | Oscillator Period | 62.5 | 125 | ns | | T _{XLXL} | | 20 | | ns | | T _{XHXX} | High Time | ļ | | ns | | T _{XLXX} | Low Time | 20 | | | | | Rise Time | | 10 | ns | | T _{XLXH} | | | 10 | ns | | T _{XHXL} | Fall Time | | | | **EXTERNAL CLOCK DRIVE (8XC196KC20)** | Symbol | Parameter | Min | Max | Units | |---------------------|----------------------|-----|------|-------| | 1/T _{XLXL} | Oscillator Frequency | 8 | 20.0 | MHz | | T _{XLXL} | Oscillator Period | 50 | 125 | ns | | T _{XHXX} | High Time | 17 | | ns | | T _{XLXX} | Low Time | 17 | | ns | | T _{XLXH} | Rise Time | | 8 | ns | | T _{XHXL} | Fall Time | | 8 | ns | ## **EXTERNAL CLOCK DRIVE WAVEFORMS** ## **EXTERNAL CRYSTAL CONNECTIONS** ## NOTE: Keep oscillator components close to chip and use short, direct traces to XTAL1, XTAL2 and Vss. When using crystals, C1 = C2 \approx 20 pF. When using ceramic resonators, consult manufacturer for recommended circuitry. ## AC TESTING INPUT, OUTPUT WAVEFORMS AC Testing inputs are driven at 2.4V for a Logic "1" and 0.45V for a Logic "0" Timing measurements are made at 2.0V for a Logic "1" and 0.8V for a Logic "0". ## **EXTERNAL CLOCK CONNECTIONS** *Required if TTL driver used. Not needed if CMOS driver is used. ### **FLOAT WAVEFORMS** 270942-23 For Timing Purposes a Port Pin is no Longer Floating when a 150 mV change from Load Voltage Occurs and Begins to Float when a 150 mV change from the Loaded V_{OH}/V_{OL} Level occurs $I_{OL}/I_{OH}=\pm15$ mA. ## **EXPLANATION OF AC SYMBOLS** Each symbol is two pairs of letters prefixed by "T" for time. The characters in a pair indicate a signal and its condition, respectively. Symbols represent the time between the two signal/condition points. | Conditions: | Signals: | L— ALE/ADV | |--------------------|---------------------|---------------| | H— High | A— Address | BR— BREQ | | L— Low | B— BHE | R— RD | | V— Valid | C CLKOUT | W- WR/WRH/WRL | | X— No Longer Valid | D DATA | X— XTAL1 | | Z— Floating | G— Buswidth | Y— READY | | Z- 1100g | H— HOLD | Q— Data Out | | | HA— HLDA | | # AC CHARACTERISTICS—SERIAL PORT—SHIPT REGISTER MODE ## SERIAL PORT TIMING—SHIFT REGISTER MODE (MODE 0) | Symbol | Parameter . | Min | Max | Units | |--|--|-------------------------|-------------------------|-------| | | Serial Port Clock Period (BRR ≥ 8002H) | 6 T _{OSC} | | ns | | T _{XLXL}
T _{XLXH} | Serial Port Clock Falling Edge
to Rising Edge (BRR ≥ 8002H) | 4 T _{OSC} -50 | 4 T _{OSC} + 50 | ns | | T _{XLXL} | Serial Port Clock Period (BRR = 8001H) | 4 T _{OSC} | | ns | | T _{XLXH} | Serial Port Clock Falling Edge
to Rising Edge (BRR = 8001H) | 2 T _{OSC} -50 | 2 T _{OSC} + 50 | ns | | T _{QVXH} | Output Data Setup to Clock Rising Edge | 2 T _{OSC} - 50 | | ns | | T _{XHQX} | Output Data Hold after Clock Rising Edge | 2 T _{OSC} - 50 | | ns | | TXHQV | Next Output Data Valid after Clock Rising Edge | | 2 T _{OSC} + 50 | ns | | | Input Data Setup to Clock Rising Edge | T _{OSC} + 50 | | ns | | TDVXH | Input Data Hold after Clock Rising Edge | 0 | | ns | | T _{XHDX} | Last Clock Rising to Output Float | | 1 T _{OSC} | ns | # WAVEFORM-SERIAL PORT-SHIFT REGISTER MODE # SERIAL PORT WAVEFORM—SHIFT REGISTER MODE (MODE 0) ## A to D CHARACTERISTICS The A/D converter is ratiometric, so absolute accuracy is dependent on the accuracy and stability of V_{REF}. # 10-BIT MODE A/D OPERATING CONDITIONS | | Description | Min | Max | Units | |------------------|--------------------------------------|------|------|-------------------| | Symbol | Ambient Temperature Commercial Temp. | 0 | + 70 | °C | | TA | Ambient Temperature Extended Temp. | -40 | + 85 | °C | | TA | Digital Supply Voltage | 4.50 | 5.50 | V | | V _{CC} | Analog Supply Voltage | 4.00 | 5.50 | V | | V _{REF} | Sample Time | 1.0 | | μs ⁽¹⁾ | | T _{SAM} | | 10 | 20 | μs ⁽¹⁾ | | TCONV | Conversion Time | 8.0 | 16.0 | MHz | | Fosc | Oscillator Frequency (8XC196KC) | 8.0 | 20.0 | MHz | | Fosc | Oscillator Frequency (8XC196KC20) | 0.0 | 1 | 1 | ### NOTE: ANGND and Vss should nominally be at the same potential, 0.00V. # 10-BIT MODE A/D CHARACTERISTICS (Over Specified Operating Conditions) | 0-BIT MODE A/D CHARA | Typical ⁽¹⁾ | Minimum | Maximum | Units* | Notes | |---|-------------------------|-------------|------------------------|----------------------------|-------| | Parameter Resolution | Турібші | 1024 | 1024 | Levels
Bits | | | ,1030/4101 | | 10 | 10
±3 | LSBs | | | Absolute Error | | 0 | | LSBs | | | Full Scale Error | 0.25 ± 0.5 | | | | | | Zero Offset Error | 0.25 ± 0.5 | | | LSBs | | | Non-Linearity | 1.0 ± 2.0 | 0 | ±3 | LSBs | | | Differential Non-Linearity Error | | > -1 | +2 | LSBs | | | Channel-to-Channel Matching | ± 0.1 | 0 | ±1 | LSBs | | | Repeatability | ±0.25 | | | LSBs | | | Temperature Coefficients: Offset Full Scale | 0.009
0.009
0.009 | | | LSB/°C
LSB/°C
LSB/°C | | | Differential Non-Linearity | 0.000 | -60 | | dB | 1, 2 | | Off Isolation | 60 | | | dB | 1 | | Feedthrough | -60 | | | dB | 1 | | V _{CC} Power Supply Rejection | -60 | 750 | 1.2K | Ω | 4 | | Input Series Resistance | | 750 | | V | 5, 6 | | Voltage on Analog Input Pin | | ANGND - 0.5 | V _{REF} + 0.5 | ļ | +, | | DC Input Leakage | | 0 | ±3.0 | μΑ | + | | Sampling Capacitor | 3 | | | pF | | 1. These values are expected for most parts at 25°C but are not tested or guaranteed. 2. DC to 100 KHz. 3. Multiplexer Break-Before-Make is guaranteed. 4. Resistance from device pin, through internal MUX, to sample capacitor. 5. These values may be exceeded if the pin current is limited to ± 2 mA. 6. Applying voltages beyond these specifications will degrade the accuracy of all channels being converted. 7. All conversions performed with processor in IDLE mode. ^{1.} The value of AD_TIME is selected to meet these specifications. ^{*}An "LSB" as used here has a value of approximately 5 mV. (See Embedded Microcontrollers and Processors Handbook for A/D glossary of terms). # 8-BIT MODE A/D OPERATING CONDITIONS | | mode A/D OF ETTATING | | Max | Units | |------------------|--------------------------------------|------|------|-------------------| | Symbol | | 0 | + 70 | °C | | TA | Ambient Temperature Commercial Temp. | | | °C | | | Ambient Temperature Extended Temp. | -40 | + 85 | | | TA | Digital Supply Voltage | 4.50 | 5.50 | V | | Vcc | | 4.00 | 5.50 | V | | V_{REF} | Analog Supply Voltage | ļ | | μs(1) | | T _{SAM} | Sample Time | 1.0 | | ļ | | | Conversion Time | 7 | 20 | μs ⁽¹⁾ | | TCONV | | 8.0 | 16.0 | MHz | | Fosc | Oscillator Frequency (8XC196KC) | | 20.0 | MHz | | Fosc | Oscillator Frequency (8XC196KC20) | 8.0 | 20.0 | 1011 12 | ### NOTE: ANGND and VSS should nominally be at the same potential, 0.00V. # 8-BIT MODE A/D CHARACTERISTICS (Over Specified Operating Conditions) | BIT MODE A/D CHARAC | Typical | Minimum | Maximum | Units* | Notes | |--|-------------------------|-----------------------|------------------------|----------------------------|--------------| | Parameter Resolution | , , , , | 256
8 | 256
8 | Levels
Bits | | | A | | 0 | ± 1 | LSBs | | | Absolute Error | ± 0.5 | | | LSBs | | | Full Scale Error | | | | LSBs | | | Zero Offset Error | ± 0.5 | | ± 1 | LSBs | | | Non-Linearity | | 0 | | LSBs | | | Differential Non-Linearity Error | | >-1 | +1 | LSBs | | | Channel-to-Channel Matching | | | ±1 | | | | Repeatability | ± 0.25 | | | LSBs | | | Temperature Coefficients: Offset Full Scale Differential Non-Linearity | 0.003
0.003
0.003 | | | LSB/°C
LSB/°C
LSB/°C | | | | | -60 | | dB | 2, 3 | | Off Isolation | -60 | | | dB | 2 | | Feedthrough | -60 | | | dB | 2 | | V _{CC} Power Supply Rejection | | 750 | 1.2K | Ωs | 4 | | Input Series Resistance | | | V _{REF} + 0.5 | V | 5, 6 | | Voltage on Analog Input Pin | | V _{SS} - 0.5 | | | | | DC Input Leakage | | 0 | ±3.0 | μΑ | | | Sampling Capacitor | 3 | | | pF | | ^{*}An "LSB" as used here has a value of approximately 20 mV. (See Embedded Microcontrollers and Processors Handbook for A/D glossary of terms). ^{1.} The value of AD_TIME is selected to meet these specifications. ^{1.} These values are expected for most parts at 25°C but are not tested or guaranteed. ^{2.} DC to 100 KHz. ^{3.} Multiplexer Break-Before-Make is guaranteed. ^{4.} Resistance from device pin, through internal MUX, to sample capacitor. ^{5.} These values may be exceeded if pin current is limited to ± 2 mA. ^{6.} Applying voltages beyond these specifications will degrade the accuracy of all channels being converted. ^{7.} All conversions performed with processor in IDLE mode. ## **EPROM SPECIFICATIONS** ## **OPERATING CONDITIONS DURING PROGRAMMING** | Symbol | Description | Min | Max | Units | |------------------|---|-------|-------|-------| | TA | Ambient Temperature During Programming | 20 | 30 | С | | V _{CC} | Supply Voltage During Programming | 4.5 | 5.5 | V(1) | | V _{REF} | Reference Supply Voltage During Programming | 4.5 | 5.5 | V(1) | | VHEF
Vpp | Programming Voltage | 12.25 | 12.75 | V(2) | | V _{EA} | EA Pin Voltage | 12.25 | 12.75 | V(2) | | Fosc | Oscillator Frequency During Auto and Slave Mode Programming | 6.0 | 8.0 | MHz | | F _{OSC} | Oscillator Frequency During Run-Time Programming (8XC196KC) | 6.0 | 16.0 | MHz | | Fosc | Oscillator Frequency During Run-Time Programming (8XC196KC20) | 6.0 | 20.0 | MHz | 1. V_{CC} and V_{REF} should nominally be at the same voltage during programming. 2. Vpp and VEA must never exceed the maximum specification, or the device may be damaged. 3. V_{SS} and ANGND should nominally be at the same potential (0V). 4. Load capacitance during Auto and Slave Mode programming = 150 pF. ## **AC EPROM PROGRAMMING CHARACTERISTICS** | Symbol | Description | Min | Max | Units | |-----------------------|------------------------------|------|-----|------------------| | T _{SHLL} | Reset High to First PALE Low | 1100 | | Tosc | | T _{LLLH} | PALE Pulse Width | 50 | | T _{OSC} | | TAVLL | Address Setup Time | 0 | | Tosc | | T _{LLAX} | Address Hold Time | 100 | | Tosc | | T _{PLDV} | PROG Low to Word Dump Valid | | 50 | Tosc | | T _{PHDX} | Word Dump Data Hold | | 50 | Tosc | | T _{DVPL} | Data Setup Time | 0 | | Tosc | | T _{PLDX} | Data Hold Time | 400 | | Tosc | | T _{PLPH} (1) | PROG Pulse Width | 50 | | Tosc | | T _{PHLL} | PROG High to Next PALE Low | 220 | | Tosc | | T _{LHPL} | PALE High to PROG Low | 220 | | Tosc | | T _{PHPL} | PROG High to Next PROG Low | 220 | | Tosc | | T _{PHIL} | PROG High to AINC Low | 0 | | Tosc | | T _{ILIH} | AINC Pulse Width | 240 | | Tosc | | T _{ILVH} | PVER Hold after AINC Low | 50 | | Tosc | | TILPL | AINC Low to PROG Low | 170 | | Tosc | | T _{PHVL} | PROG High to PVER Valid | | 220 | Tosc | ^{1.} This specification is for the Word Dump Mode. For programming pulses, use the Modified Quick Pulse Algorithm. See user's manual for further information. # DC EPROM PROGRAMMING CHARACTERISTICS | DC EPROM H | ROGRAMMING CHARACTERISTICS | | | Units | |------------|---|-----|-----|-------| | O. mb ol | Description | Min | Max | Units | | Symbol | | | 100 | mA l | | Ірр | V _{PP} Supply Current (When Programming) | | 100 | | Do not apply V_{PP} until V_{CC} is stable and within specifications and the oscillator/clock has stabilized or the device may be damaged. # **EPROM PROGRAMMING WAVEFORMS** # SLAVE PROGRAMMING MODE DATA PROGRAM MODE WITH SINGLE PROGRAM PULSE # SLAVE PROGRAMMING MODE IN WORD DUMP WITH AUTO INCREMENT # SLAVE PROGRAMMING MODE TIMING IN DATA PROGRAM WITH REPEATED PROG PULSE AND AUTO INCREMENT # 8XC196KB TO 8XC196KC DESIGN CONSIDERATIONS - Memory Map. The 8XC196KC has 512 bytes of RAM/SFRs and an optional 16K of ROM/OTPROM. The extra 256 bytes of RAM will reside in locations 100H-1FFH and the extra 8K of ROM/OTPROM will reside in locations 4000H-5FFFH. These locations are external memory on the 8XC196KB. - 2. The CDE pin on the KB has become a $V_{\rm SS}$ pin on the KC to support 16/20 MHz operation. - EPROM programming. The 8XC196KC has a different programming algorithm to support 16K of on-board memory. When performing Run-Time Programming, use the section of code in the 8XC196KC User's Guide. - 4. ONCETM Mode Entry. The ONCE mode is entered on the 8XC196KC by driving the TXD pin low on the rising edge of RESET. The TXD pin is held high by a pullup that is specified by I_{OH1}. This Pullup must not be overridden or the 8XC196KC will enter the ONCE mode. - 5. During the bus HOLD state, the 8XC196KC weakly holds $\overline{\text{RD}}$, $\overline{\text{WR}}$, ALE, $\overline{\text{BHE}}$ and INST in their inactive states. The 8XC196KB only holds ALE in its inactive state. - A RESET pulse from the 8XC196KC is 16 states rather than 4 states as on the 8XC196KB (i.e., a watchdog timer overflow). This provides a longer RESET pulse for other devices in the system. ## **8XC196KC ERRATA** None known. ## DATA SHEET REVISION HISTORY This data sheet is valid for devices with an "F" at the end of the topside tracking number. The topside tracking number consists of nine characters and is the second line on the top side of the device. Data sheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices. The following are important differences between the 270942-002 and 270942-003 data sheets: - NMI during PTS, QBD port glitch and Divide HOLD/READY erratas were fixed and have been removed from the data sheet. The HSI errata is also removed as this is now considered normal operation. - 2. Combined 16 and 20 MHz data sheets. Data sheet 270924-001 (20 MHz) is now obsolete. - 3. Added 80-lead SQFP package pinout. - 4. Added documentation for CLKOUT disable bit. - 5. $\theta_{\rm JA}$ for QFP package was changed to 55°C/W from 42°C/W. - 6. θ_{JC} for QFP package was changed to 16°C/W from TBD°C/W. - 7. T_{SAM} (MIN) in 10-bit mode was changed to 1.0 μs from 3.0 μs . - 8. T_{SAM} (MIN) in 8-bit mode was changed to 1.0 μ s from 2.0 μ s. - 9. I_{IL1} specification for port 2.0 was renamed I_{IL2} . - 10. I_{1L2} (MAX) is changed to TBD from 6 mA. - 11. I_{IH1} (MAX) is changed to $\pm 200~\mu\text{A}$ from $\pm 100~\mu\text{A}$. - 12. I_{IH1} test condition changes to $V_{IN}=2.4V$ from $V_{IN}=5.5V$. - 13. V_{HYS} is changed to 300 mV from 150 mV. - 14. I_{CC} (TYP) at 16 MHz is changed to 65 mA from 50 mA. - 15. I_{CC} (MAX) at 16 MHz is changed to 75 mA from 70 mA. - 16. I_{CC} (TYP) at 20 MHz is changed to 80 mA from 60 mA. - 17. I_{CC} (MAX) at 20 MHz is changed to 92 mA from 86 mA. - 18. IIDLE (TYP) at 16 MHz is changed to 17 mA from 15 mA. - 19. I_{IDLE} (MAX) at 16 MHz is changed to 25 mA from 30 mA. - 20. I_{IDLE} (TYP) at 20 MHz is changed to 21 mA from 15 mA. - 21. I_{IDLE} (MAX) at 20 MHz is changed to 30 mA from 35 mA. - 22. I_{PD} (TYP) at 16 MHz is changed to 8 μ A from 15 μ A. - 23. I_{PD} (MAX) at 16 MHz is changed to 15 μ A from TBD. - 24. IPD (TYP) at 20 MHz is changed to 8 μ A from 18 μ A. - 25. I_{PD} (MAX) at 20 MHz is changed to 15 μ A from TBD. - 26. T_{CLDV} (MAX) is changed to T_{OSC} -45 ns from T_{OSC} 50 ns. - 27. T_{LLAX} (MIN) is changed to $T_{OSC}-35$ ns from $T_{OSC}-40$ ns. - 28. T_{CHWH} (MIN) is changed to -5 ns from -10 ns. - 29. T_{RHAX} (MIN) is changed to $T_{OSC}-25$ ns from $T_{OSC}-30$ ns. - 30. T_{HALAZ} (MAX) is changed to +15 ns from +10 ns. - 31. THALBZ (MAX) is changed to +20 ns from +15 ns. - 32. T_{HAHBV} (MAX) is now specified at + 15 ns, was formerly unspecified. The following are the important differences between the -001 and -002 versions of data sheet 270942. - 1. Express and Commercial devices are combined into one data sheet. The Express only data sheet 270794-001 is obsolete. - 2. Removed KB/KC feature set differences, pin definition table, and SFR locations and bitmaps. - 3. Added programming pin function to package drawings and pin descriptions. - 4. Changed absolute maximum temperature under bias from 0° C to $+70^{\circ}$ C to $+55^{\circ}$ C to $+125^{\circ}$ C. - 5. Replaced V_{OH2} specification with I_{OH1} and I_{IL1} specifications. - 6. Added I_{IH1} specification for NMI pulldown resistors. - 7. Added maximum hold latency table. - 8. Added external oscillator and external clock circuit drawings. - 9. Changed Clock Drive T_{XHXX} and T_{XLXX} Min spec to 20 ns. - 10. Fixed Serial Port TXLXH specification. - 11. Added 8- and 10-bit mode A/D operating conditions tables. - 12. Specified operating range for sample and convert times. - 13. Added specification for voltage on analog input pin. - 14. Put operating conditions for EPROM programming into tabular format. The following differences exist between data sheet 270942-001 and 270741-003. - 1. ONCE MODE VIL errata removed. - 2. V_{REF} Min changed from 4.5V to 4.0V. The following differences exist between the -002 and -003 versions of data sheet 270741. - 1. 80-Pin QFP package added, 68-pin Cerquad package deleted. - 2. The following DC Characteristics were added: V_{HYS} RESET Hysteresis spec added III 1, AD BUS in RESET current Max added ## **DATA SHEET REVISION HISTORY** (Continued) 3. The following AC Characteristics were changed: TAVYV Max from 2TOSC-75 to 2TOSC-68 TAVGV Max from 2TOSC-75 to 2TOSC-68 T_{WLWH} Min from T_{OSC} -30 to T_{OSC} -20 T_{XHCH} Min changed from 30 ns to 20 ns THALBZ Max changed from 10 ns to 15 ns 4. Under 10-bit A/D Characteristics: Sample Time/Convert Time Testing Conditions added. Typical values added for Full Scale Error, Zero Offset Error, Non-Linearity and Channel-to-Channel Matching. Max Absolute Error changed from ± 8 to ± 3 LSBs Max Non-Linearity changed from ± 8 to ± 3 LSBs 5. Under 8-bit Mode A/D Characteristics: Max Absolute Error changed from ± 2 to ± 1 LSBs Max Non-Linearity changed from ± 2 to ± 1 LSBs Typical Full Scale Error changed from $\pm\,1$ to $\pm\,0.5$ LSBs Typical Zero Offset Error changed from ± 2 to ± 0.5 LSBs - 6. The minimum frequency at which the device is tested was changed to 8.0 MHz from 3.5 MHz. Thus, data sheet specifications are guaranteed from 8 MHz to 16 MHz. However, the device is static and will function below 1 Hz. - 7. The T2CONTROL (T2CNTC) SFR was renamed IOC3. - 8. ONCE MODE V_{IL} errata added. Other errata removed. - 9. The A-Step device corresponding to data sheet 270741-002 had bits IOC1.4 and IOC1.6 reversed. The problem was corrected in the B-1 Step device corresponding to data sheet 270741-003. The following are the important differences between the -001 and -002 versions of data sheet 270741. Please review this revision history carefully. - 1. The 83C196KC (ROM) was added to the product line. - 2. The OTP version of the EPROM was added to the product line. - 3. HOLD/HLDA Specifications were added. - 4. The I_{OL} test condition on V_{OL1} has changed to -0.5 mA from -0.4 mA. - 5. The I_{OH} test condition V_{OH2} has changed to 0.8 mA from 1.4 mA. - 6. BMOVi errata was added. - 7. Errata was added for the HSI resolution and first event anomalies. - 8. Errata was added for the serial port Framing Error anomaly. # intel # **EUROPEAN SALES OFFICES** ### **FINLAND** Intel Ruosilantie 2 00390 Helsinki Tel: (358) 0 544 644 Fax: (358) 0 544 030 ## **FRANCE** Intel 1, rue Edison – BP 303 78054 St Quentin en Yvelines Cedex Tel: (33) (1) 30 57 70 00 Fax: (33) (1) 30 64 6032 ### **ISRAEL** Intel Atidim Industrial Park-Neve Sharet P.O. Box 43202 Tel-Aviv 61430 Tel: (972) 03 498080 Fax: (972) 03 491870 ### **ITALY** Intel Milanofiori Palazzo E 20094 Assago Milano Tel: (39) (02) 89200950 Fax: (39) (2) 3498464 ### **NETHERLANDS** Intel Postbus 84130 3099 CC Rotterdam Tel: (31) 10 407 11 11 Fax: (31) 10 455 4688 ### SPAIN Intel Zurbaran, 28 28010 Madrid Tel: (34) 308 25 52 Fax: (34) 410 7570 ### **SWEDEN** Intel Dalvägen 24 171 36 Solna Tel: (46) 8 734 01 00 Fax: (46) 8 278085 ## **SWITZERLAND** Intel Zuerichstrasse 8185 Winkel-Rueti bei Zuerich Tel: (41) 01/860 62 62 Fax: (41) 01/860 0201 ## U.K. Intel Pipers Way Swindon, Wilts SN3 1RJ Tel: (44) (0793) 696000 Fax: (44) (0793) 641440 ### **WEST GERMANY** Intel GmbH Dornacher Strasse 1 8016 Feldkirchen bei Muenchen Tel: (49) 089/90992-0 Fax: (49) 089/904/3948 Intel Abraham Lincoln Strasse 16-18 6200 Wiesbaden Tel: (49) 06121/7605-0 Fax: (49) 06121 718615 Intel Zettachring 10A 7000 Stuttgart 80 Tel: (49) 0711/7287-280 Fax: (49) 0711 7280137